

SYSTEM DYNAMICS AND SYSTEM CONTROLS USING ALTAIR ACTIVATE

Patrick Goulding, Application Engineer

1 Activate Overview

2 Physical Component Modeling

Agenda

System Dynamics and System Controls using Altair Activate

3 Vehicle Dynamics

4 Vehicle Energy Management

5 Learning Resources

WHAT IS ALTAIR ACTIVATE?

Open and flexible integration platform

3D

Open and flexible integration platform

to

to

Open and flexible integration platform

LINEARIZATION Altair A

OPTIMIZATION

0D

to

1D

to

3D

3D

Open and flexible integration platform

to

to

Examples of Multi-Disciplinary System Simulations (3D+1D+0D)

Time = 0.000000

Multi-body, Controls

Motors, Multi-body, Controls

Structural, Motors, Multi-body, Controls

Light-weighting, Structural, Multi-body

Hydraulics, Light-weighting, Structural, Multi-body

CFD, EMag, Structural, Motors, Multi-body, Controls

Activate

Altair

Multi-Body: Different levels of fidelity

(0D-1D-)3D co-simulation

Altair Activate

Tour of the User Interface

MECHANICAL MODELING EXAMPLE

Example: Active Suspension

Quarter-car: passive system only

Description of system states:

- Tire deflection: Z_us Z_road
- Unsprung mass velocity: d(Z_us)/dt
- Suspension stroke: Z_s Z_us
- Sprung mass velocity: d(Z_s)/dt

Example: Active Suspension (modeling with Modelica)

Example: Active Suspension (modeling with Modelica)

Example: Active Suspension (Controls)

VEHICLE DYNAMICS

Vehicle Dynamics

Simple car dynamics:

$$m\ddot{x} = F_{drive} - F_{brake} - F_{rr} - F_D$$

Driving force:

$$F_{drive} = \frac{1}{r} * M_{drive}$$

Drive torque: $M_{drive} = 0$ to 200 Nm

Wheel radius: r = 0.275 m

Brake force:

$$F_{brake} = \beta \frac{1}{r} * M_{brake}$$

Braking torque : $M_{brake} = 3500 \text{ Nm}$

Brake pedal position : $\beta = 0$ to 1

Rolling friction:

$$F_{rr} = \mu_{rr} * m * g$$

Car mass : m = 1350 kg

Rolling friction coefficient : $\mu_{rr} = 0.015$

Drag:

$$F_D = \frac{1}{2} A * \rho * c_w * \dot{x}^2$$

Cross sectional area : $A = 2,14 \text{ m}^2$

Drag coefficient : $c_w = 0.33$

Density of air : $\rho = 1,204 \text{ kg/m}3$

E-book for System Dynamics and Controls Using Altair Compose

Contents:

Introduction

System Dynamics

Linear and Nonlinear Systems

Continuous and Discrete Dynamics

Time-variant and Time-invariant

SISO, SIMO, MIMO, MISO

Continuous Dynamics

System Analysis

Control Theory

Discrete Dynamics

Discretization and State-Space Representation

Natural and Forced Response

Eigenvalues and Eigenvectors

Stability

z Transform

Initial and Final Value Theorems

z Transfer Function

Discretization of Continuous Transfer Function

Appendix

Asymptotic Bode Plot

Proportional-Integral-Derivative (PID) GUI

Transformation from s-Domain to z-Domain

Available for free download at Altair University

https://altairuniversity.com/

Unique Tools for Systems Modeling

www.altair.com/systems-modeling-applications

- Open
- Easy-to-use
- Seamlessly move from 0D/1D to 3D
- Leverage Altair's business model

Products download

www.altairuniversity.com www.connect.altair.com

Learning Center

https://www.altair.com/learning-center/

Altair Forum

https://community.altair.com

THANK YOU

altair.com

#ONLYFORWARD

